Medicated structural PVP/PEG composites fabricated using coaxial electrospinning

Author:

Wu Yong-Hui1,Yu Deng-Guang2,Li Hai-Peng2,Wu Xiang-Yang2,Li Xiao-Yan2

Affiliation:

1. 1The Department of Mechanical Engineering, Guangxi Technological College of Machinery and Electricity, Nanning 530007, China

2. 2School of Material Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Abstract

AbstractA new type of medicated polymeric composite consisting of acyclovir (ACY), polyvinylpyrrolidone K60 (PVP) and polyethylene glycol 6000 (PEG) with core-shell structure were prepared by a coaxial electrospinning process. The composites could enhance the dissolution of the poorly water-soluble drug. The shell layers were formed from a spinnable working fluid containing the filament-forming PVP and citric acid while the core parts were prepared from an un-spinnable co-dissolving solution composed of ACY, sodium hydrate and PEG. Scanning electron microscope and transmission electron microscope observations demonstrated that the composites had a homogeneous linear topography with a slippery surface, a diameter of 670±130 nm, and an obvious core-shell structure. X-ray diffraction (XRD) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy results demonstrated that the drug and citric acid contained in the core and shell parts were in an amorphous status. In vitro dissolution experiments exhibited that ACY was able to be free within 1 min, and the dissolution media were neutral due to acid-basic action within the core-shell structures. The medicated nanocomposites resulted from a combined usage of hydrophilic polymeric excipients PVP and PEG could provide a new solution to the problem associated with the dissolution of poorly water-soluble drugs.

Publisher

Walter de Gruyter GmbH

Subject

Polymers and Plastics,Physical and Theoretical Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3