Synthesis and characterization of polyvinylmethylsiloxanes by cationic polymerization using a solid green catalyst

Author:

Kherroub Djamal Eddine1,Belbachir Mohammed2,Lamouri Saad3

Affiliation:

1. Laboratory of Polymer Chemistry, Department of Chemistry, Faculty of Exact and Applied Sciences, University of Oran 1 Ahmed Ben Bella, BP 1524 El’Menouer Oran 31000, Algeria; and University Centre of Relizane Ahmed Zabana, Institute of Sciences and Technology, BP 48000, Algeria, Tel.: 00213 795 565 299

2. Laboratory of Polymer Chemistry, Department of Chemistry, Faculty of Exact and Applied Sciences, University of Oran 1 Ahmed Ben Bella, BP 1524 El’Menouer Oran 31000, Algeria

3. Laboratory of Macromolecular Chemistry, Polytechnic Military School (EMP), Bordj El Bahri, Algiers 16111, Algeria

Abstract

AbstractThe present work is devoted to the synthesis and characterization of vinylsiloxane polymers produced by the use of an activated natural catalyst known as Maghnite-H+. The cationic ring opening polymerization of pentavinylpentamethylcyclopentasiloxane (V5D5) made it possible to obtain the desired polymeric materials. Through this study, we have adapted a new strategy of synthesis of a siloxane polymer with relatively high molecular mass, using a solid initiator activated by sulfuric acid, which has enabled us to combine the ecological aspect of synthesis and the effectiveness of the catalyst in this kind of reaction. Structural [infrared (IR), proton and carbon nuclear magnetic resonance (1H NMR and 13C NMR)], thermal differential scanning (DSC) and chromatographic (GPC) characterization methods have allowed the products obtained to be identified and their various properties to be focused on. The kinetic study was made to determine the order of the reaction. The proposed reaction mechanism shows the advantages of Maghnite-H+.

Publisher

Walter de Gruyter GmbH

Subject

Polymers and Plastics,Physical and Theoretical Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3