Fully water-blown polyisocyanurate-polyurethane foams with improved mechanical properties prepared from aqueous solution of gelling/ blowing and trimerization catalysts

Author:

Sukkaneewat Benjatham1,Sridaeng Duangruthai2,Chantarasiri Nuanphun3

Affiliation:

1. Program of Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand

2. Department of Chemistry, Faculty of Science, Rangsit University, Pathumthani, 12000, Rangsit, Thailand

3. Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand

Abstract

AbstractFully water-blown polyisocyanurate-polyurethane (PIR-PUR) foams with improved mechanical properties have been prepared using aqueous solutions of metal-ammonia complex, Cu(Am) or Zn(Am), as gelling/blowing catalysts and potassium octoate (KOct) solution in diethylene glycol as a trimerization catalyst. Two catalyst mixtures, Cu(Am)+KOct and Zn(Am)+KOct, were obtained as homogeneous aqueous solutions. In comparison to commercial catalyst system, DMCHA+KOct (DMCHA = N,N-dimethylcyclohexylamine), Cu(Am) and Zn(Am) could be miscible with KOct solution and water easier than DMCHA. This miscibility improvement led Cu(Am)+KOct and Zn(Am)+KOct to show faster catalytic reactivity in PIR-PUR foam reactions than DMCHA+KOct. All obtained PIR-PUR foams showed self-extinguishing properties and achieved HF1 materials. However, PIR-PUR foams prepared from Cu(Am)+KOct and Zn(Am)+KOct at NCO:OH ratio of 2:1 had suitable density for industrial applications and showed higher compressive strength than that prepared from DMCHA+KOct. These foams have high potential to apply as insulations for constructions, core laminates in wall panel or storage tanks.

Publisher

Walter de Gruyter GmbH

Subject

Polymers and Plastics,Physical and Theoretical Chemistry,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3