Synthesis and properties of PI composite films using carbon quantum dots as fillers

Author:

Zhang Yuyin1,Guo Hongtao2,Jiang Shaohua2,Hu Zhaoyu1,Zha Guojun13,Liu Kunming4,Hou Haoqing1

Affiliation:

1. College of Chemistry and Chemical Engineering, Jiangxi Normal University , Nanchang , China

2. Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University , Nanjing , 210037 , China

3. School of New Energy Science and Engineering, Xinyu University , Xinyu , China

4. Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology , Ganzhou 341000 , China

Abstract

Abstract Polyimide (PI) is widely used in the field of microelectronics because of its excellent thermal, mechanical, optical, and electrical properties. With the development of electronics and information industry, PI as a dielectric material needs to possess low dielectric loss. PI/carbon quantum dots (PI/CQDs) composite films with low dielectric loss were prepared by introducing CQDs into PI matrix. At 25°C and 1 kHz voltage, the dielectric loss of pure PI film is about 0.0057. The dielectric loss of PI/CQDs composite film is about 0.0018, which is about 68% lower than that of pure PI film. The dielectric loss of PI/CQD composite film is greatly reduced while the mechanical properties and thermal properties of PI/CQDs composite film roughly remain unchanged. Due to the cross-linking structure formed between CQDs and PI molecular chain, the relative movement of PI molecular chain is hindered.

Publisher

Walter de Gruyter GmbH

Subject

Polymers and Plastics,Physical and Theoretical Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3