Interfacial interaction exploration and oxygen barrier potential of polyethylene/poly(ethylene-co-vinyl alcohol)/clay hybrid nanocomposites

Author:

Ahmadi Zahed1

Affiliation:

1. 1Department of Chemistry, Amirkabir University of Technology, Tehran, Iran

Abstract

AbstractHybrid nanocomposites based on high-density polyethylene (HDPE)/poly (ethylene-co-vinyl alcohol) (EVOH)/clay were prepared and fully characterized. Morphological (WAXS and TEM), calorimetric (DSC), and dynamic mechanical thermal (DMTA) analyses were applied to investigate potential of nanocomposites as barrier against oxygen. Co-existence of ingredients of different nature, i.e. HDPE (general-purpose non-polar component), EVOH (engineering polar component with excellent barrier properties), nanoclay (planar one-dimensional mineral barrier nanofiller), and maleated HDPE (PE-g-MA) as coupling agent, brings about serious intricacies in view of interaction between existing phases. Conceptual/experimental analysis was performed to explore the interdependence between microstructure and oxygen barrierity of HDPE/EVOH/clay nanocomposites through the lens of interaction state in the system. Morphological measurements confirmed formation of an intercalated nanostructure, while investigations on complex viscosity, storage modulus, permeability, thermo-mechanical properties, and nanoclay interlayer galleries were all indicative of dependence of nanocomposites’ properties on molecular interactions. The performance of nanocomposite sheets as oxygen barriers was mechanistically explained.

Publisher

Walter de Gruyter GmbH

Subject

Polymers and Plastics,Physical and Theoretical Chemistry,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3