Affiliation:
1. SKF – Research & Technology Development Center, 3992 AE Houten, The Netherlands
2. Department of Machine Manufacturing Technologies, “Gheorghe Asachi” Technical University of Iasi, 700050, Iasi, Romania
Abstract
AbstractA research is reported on the nanomechanics and tribology of the Arboblend V2 Nature biopolymer (a 100% bio-based material, biodegradable, or resistant depending of application), being a mixture of different biopolymers such as lignin, polylactic acid, cellulose, biopolyamides, and other natural additives. The specimens were made by an industrial-scale injection molding machine. The nanoindentation characterization have unveiled that an increase in processing temperature from 160°C to 170°C produces a rise in hardness and elastic modulus of ∼20%. Tribological characterization against a bearing-steel counterface has shown that for both processing temperatures, the increase of the applied load or the increase of sliding speed will produce an increase of the friction coefficient (µ) and wear. At an applied load of 1 N (contact pressure of 104 MPa) and tracks in a direction perpendicular to the surface textured lines, the lowest µ ∼ 0.148 are for samples made T = 170°C, while for tracks parallel to the textured lines, the lowest µ ∼ 0.059 is obtained for samples made at T = 160°C. Experiments made at different ambient humidity have established that friction coefficient is higher at 0% RH or at 75% RH than at 33% RH. Our results show that the biopolymers Arboblend V2 Nature is a candidate to substitute some popular fossil-based thermoplastics in numerous tribological industrial applications.
Subject
Polymers and Plastics,Physical and Theoretical Chemistry,General Chemical Engineering
Reference102 articles.
1. The nature of the frictional force at the macro-, micro-, and nano-scales;Friction,2014
2. Adhesion and friction of polymers,2009
3. Microstructure, mechanical properties and technology of samples obtained by injection from arboblend V2 nature;Indian J Eng Mater S,2014
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献