Modifying potato starch by glutaraldehyde and MgCl2 for developing an economical and environment-friendly electrolyte system

Author:

Komal Baby1,Yadav Madhavi1,Kumar Manindra21,Tiwari Tuhina1,Srivastava Neelam1

Affiliation:

1. Department of Physics (MMV), Banaras Hindu University, Varanasi-221005, India

2. Department of Physics, D.D.U. Gorakhpur University, Gorakhpur-273009, India

Abstract

AbstractBiodegradable polymer electrolyte systems are the most sought over option for cheap and energy efficient storage devices. Present paper discusses the results of potato starch + MgCl2 system which satisfy the technical and economic criteria to become a potential candidate for future electrolyte systems. The developed system has high ionic conductivity (~3.43 × 10-2 S/cm), low relaxation time (75 μs) and wide electrochemical stability window (ESW ~4.6 V). The phase angle approaches -79° and maintains its value for 10 Hz to 1 kHz frequency range. The prepared material is a free standing film which can be bended and twisted up to 90°, which makes it suitable for flexible electrochemical device fabrication. The equivalent series resistance (ESR) is quite low (3.41 Ω) and self-resonance frequency below which energy can be efficiently stored is approximately 0.1 MHz. Hence the present study reports an economical, easy to handle and environment friendly electrolyte suitable for electrochemical device fabrication.

Publisher

Walter de Gruyter GmbH

Subject

Polymers and Plastics,Physical and Theoretical Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3