Affiliation:
1. Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5 -13 (Haus D), D-81377 München, Germany
2. Institut für Physikalische Chemie, Universität Münster, Schloßplatz 4/7, D-48149 Münster, Germany
3. Fraunhofer Institut für Fertigungstechnik und Materialforschung, Winterbergstraße 28, D-01277 Dresden, Germany
Abstract
Abstract
The stannides RERhSn (RE = Ho -Yb) and ScTSn (T = Pd, Pt) were prepared by reaction of the elements in sealed tantalum tubes in a high-frequency furnace, by arc-melting, or by a tin-flux technique in quartz tubes. The rhodium based stannides crystallize with the ZrNiAl type structure, space group P6̄2m. The four structures were refined from single crystal X-ray data: a = 754.5(3), c = 377.1(1) pm, wR2 = 0.0357, 233 F2 values for HoRhSn, a = 753.3(1), c = 372.16(8) pm, wR2 = 0.0721, 233 F2 values for ErRhSn, a = 753.7(3), c = 369.0(2) pm, wR2 = 0.0671,233 F2 values for TmRhSn, and a = 753.17(5), c = 366.53(4) pm, wR2 = 0.0566, 180 F2 values for YbRhSn with 14 parameters for each refinement. ScPdSn and ScPtSn adopt the HfRhSn type, a superstructure of ZrNiAl, space group P6̄2c: a = 747.5(1), c = 710.2(1) pm, for ScPdSn, and a = 738.37(9), c = 729.47(9) pm, wR2 = 0.0452,369 F2 values, 18 variables for ScPtSn. Structural motifs in these stannides are transition metal centered trigonal prisms formed by the rare earth and tin atoms. While these prisms are regular in the rhodium based stannides, significant distortions occur in ScPdSn and ScPtSn. The formation of the superstructure can be ascribed to packing reasons. The shortest interatomic distances occur between the transition metal (T) and tin atoms. These atoms form three-dimensional [FSn] networks in which the rare earth atoms fill distorted hexagonal channels. The series RERhSn displays a somewhat unique behavior. The a lattice parameter is more or less independent of the rare earth element, while the c lattice parameter shows the expected lanthanoid contraction. 119Sn Mössbauer spectroscopic data of the rhodium stannides show signals at isomer shifts varying from 1.77 to 1.82 mm/s subject to quadrupole splitting between 0.75 to 0.82 mm/s.
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献