Effect of deposition potential and saccharin addition on structural, magnetic and magnetoresistance characteristics of NiCoFeCu films

Author:

Kuru Hilal1,Köçkar Hakan1,Alper Mürsel2

Affiliation:

1. Balikesir University, Science and Literature Faculty, Physics Department , 10145, Cagis , Balikesir , Türkiye

2. Uludag University, Science and Literature Faculty, Physics Department , 16059, Gorukle , Bursa , Türkiye

Abstract

Abstract NiCoFeCu films were electrodeposited on Ti substrates at different deposition potentials and different concentrations of saccharin added to solution. Compositional analysis showed that although Ni was the highest concentration in solution at low potentials of −1.0 V and −1.5 V, the Ni content was lower than the Co content in the films. Anomalous co-deposition behaviour of iron group metals was observed. When the deposition potential increased to −2.0 V and −2.5 V, the Ni content of films increased while the Co, Fe and Cu content decreased. In the case of saccharin addition to the solution, there is a slight change in the film content. All films have face-centred cubic structure. Structural analysis clearly showed that the potential has a significant effect on the texture degree of the films, since the crystal texture changed from (111) to (220) with increasing potential. The surface morphology of the films was observed to be affected by the deposition potential and saccharin concentration. For the magnetic analysis, saturation magnetisation, M s value gradually decreased from 905 to 715 emu/cm3 with the variation of film content caused by the increase of the potential from −1.0 V to −2.5 V. And, a slight increase in M s was detected with the addition of saccharin. Besides, the longitudinal and transverse magnetoresistance magnitudes increased from ∼2.5 % to 7.0 % with increasing deposition potential and all films exhibit anisotropic magnetoresistance. Films with desired magnetic properties can be obtained for potential use as magnetic materials in electronics such as magnetoresistive devices.

Funder

Balikesir Üniversitesi

Devlet Planlama Ӧrgütü

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3