Blue light-emitting diode of Er3+-doped borate glass for optoelectronics devices

Author:

Farag Mohammed A.1,Abd-Allah Khalid1,Turky Gamal M.2,El-Okr Mohamed M.1,Abu-raia Walid A.3,Saeed Aly4

Affiliation:

1. Physics Department, Faculty of Science , Al-Azhar University , Cairo , Egypt

2. Microwave Physics Department , National Research Center , Cairo , Egypt

3. Basic Science Department , Institute of Aviation Engineering & Technology , Giza , Egypt

4. Mathematical and Natural Science Department, Faculty of Engineering , Egyptian Russian University , Cairo , Egypt

Abstract

Abstract A blue emitter of Er3+ ions doped a host glass of a chemical composition 30B2O3–30Bi2O3–20Li2O–10BaO–10PbO was fabricated to be used in optoelectronics devices. Four proposed concentrations of Er2O3, which are 0.5, 1, 2, and 4 mol%, were suggested to study the impact of Er3+ ions on the structural, thermal, and photoluminescence properties of the considered host glass, respectively. The phase checking of the produced glasses using X-ray diffraction patterns showed the amorphicity phase formation. Impact of Er3+ ions on the structural properties of the considered host glass network was extensively studied through the occurred variations in XRD patterns, density and density-based parameters, and FTIR spectra. Thermally, the considered glasses have high thermal stability and high glass formability. Optically, the optical band gap, which ranged between 2.18 and 2.56 eV, signifies that the considered glasses have a semiconducting nature. Under 540 nm excitation wavelength, three bands were emitted in the blue region at 450, 462, and 486 nm and two in the violet region at 412 and 427 nm. Chromaticity analysis through CIE 1931 chromaticity diagram showed a strong blue light emission from the produced glasses. The blue light color purity of the considered glasses ranged between 90.887 and 92.324 %. Hence, the considered glasses have suitable characteristics that make them a good choice as blue light-emitting diodes in the optoelectronics devices.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3