Fractal characterization of polyester based standard and single walled carbon nanotube modified composites

Author:

Ilgaz Aykut1,Bayırlı Mehmet1

Affiliation:

1. Department of Physics, Faculty of Science and Letter , Balıkesir University, Çagıs Kampüsü , 10185 Balıkesir , Türkiye

Abstract

Abstract The electrical properties of composite materials over a wide frequency range are of great interest, not only for experimental applications, but also for theoretical studies such as fractal analysis. This study presents comparative analysis of alternating current (ac) conductivity and fractal structure characteristics in standard and single walled carbon nanotube (SWCNT) reinforced polymer composites based unsaturated polyester resin (UPR). The electrical characteristics of polymer matrices at 320 K have been analyzed as a function of frequency by impedance analysis method. It was found that the conductivity of the nanotube doped material in the dc conductivity region, which is the low frequency region, is independent of the frequency and takes a constant value. It was proved that conductivity obeys Jonscher’s power law toward the high frequency region. The standard sample showed an insulating behavior that exhibits continuous increase with increasing frequency. The images of the samples were obtained by scanning electron microscope (SEM) to reveal the relationship between the conductivity of the materials and their fractal properties. All samples were converted to binary format for calculations. Cellular particle density for each sample was determined according to scaling theory. Then, the surface coverage ratio, fractal dimensions, cluster densities, average cluster sizes and critical interface exponent values of the samples were calculated and compared with different samples in the literature. It was determined that the coverage ratio and fractal dimension increased when carbon nanotubes were added. In addition, it was observed that the interface critical exponent decreased when the carbon nanotube was doped.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3