M2 macrophages-derived exosomal miR-3917 promotes the progression of lung cancer via targeting GRK6

Author:

Song Sinuo1,Zhao Yunping2,Wang Xiaoxing2,Tong Xinghe1,Chen Xiaobo2ORCID,Xiong Qiuxia3

Affiliation:

1. Department of Medical Management , 920th Hospital of Joint Logistics Support Force ; Kunming 650032 , China

2. Department of Thoracic Surgery , The First Affiliated Hospital of Kunming Medical University , 295 Xichang Rd. , Kunming 650332 , China

3. Department of Clinical Laboratory , The First Affiliated Hospital of Kunming Medical University , Kunming 650032 , Yunnan , China

Abstract

Abstract Macrophages in the tumor microenvironment (TME) can serve as potential targets for therapeutic intervention. The aim of this study was to investigate the molecular mechanism by which M2 macrophage-derived exosomes (M2-Ex) affect lung cancer progression through miRNA transport. The THP-1 cells were differentiated into M0 and M2 macrophages. M2-Ex were isolated and identified by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Cancer tissues and adjacent tissues of non-small-cell lung cancer (NSCLC) patients were collected. H1299 and A549 cells were co-cultured with M2-Ex. Subcutaneous xenograft mouse model was established. miR-3917 is highly expressed in lung cancer tissues and M2-Ex. Interference of miR-3917 in M2-Ex inhibits H1299 cell proliferation, migration and invasion, while overexpression of miR-3917 had the opposite effect in A549 cells. M2-Ex promote tumor growth by delivering miR-3917 in vivo. miR-3917 could target G protein-coupled receptor kinase 6 (GRK6), and interference of miR-3917 in M2-Ex inhibits H1299 cells proliferation, migration and invasion by up-regulating GRK6 level, while overexpression of miR-3917 had the opposite effect in A549 cells. M2-Ex can transfer miR-3917 into lung cancer cells and promote lung cancer progression, providing theoretical basis for the diagnosis and effective treatment of lung cancer.

Funder

National Natural Science Foundation of China

Kunming Medical University Applied Basic Research Joint Special Fund General Program

Publisher

Walter de Gruyter GmbH

Subject

Clinical Biochemistry,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3