Oral intake of collagen hydrolysate from mackerel scad (Decapterus macarellus) attenuates skin photoaging by suppressing the UVB-induced expression of MMP-1 and IL-6

Author:

Titisari Rizki Sandhi1,Herawati Elisa1ORCID,Astirin Okid Parama1

Affiliation:

1. Graduate Program of Bioscience, Department of Biology, Faculty of Mathematics and Natural Sciences , Universitas Sebelas Maret , Surakarta 57126 , Indonesia

Abstract

Abstract Objectives Excessive skin exposure to UVB radiation can induce photoaging caused by an imbalance in oxidative stress and inflammatory responses, damaging the skin’s structure and surface layer. A previous study revealed that collagen hydrolisate extracted from the skin of mackarel scads (Decapterus macarellus) had antiaging properties that were tested in vitro, which serves as a foundation for a subsequent study of its use in vivo. This study aimed at investigating the repair effect of the mackerel scad’s skin collagen hydrolysate (MSS-CH) in photoaging conditions in a mouse model. Methods MSS-CH was given orally in mice model of skin photoaging under chronic exposure to UVB irradiation for 12 weeks. Morphological and histological changes on the skin were evaluated using SEM and HE staining, along with the measurement of the expression of matrix metalloproteinases (MMP-1) and cytokine pro-inflammatory interleukin 6 (IL-6) using ELISA. Results MSS-CH inhibits the occurrence of epidermal thickening and damage to the dermal layer of the skin. As a result, it restores the epidermis’ barrier function and reduces surface damage caused by photoaging. The skin of the MSS-CH treated group exhibited improved physical appearance with reduced fine lines, wrinkles, and enhanced smoothness. Additionally, administering MSS-CH to the mice groups reduced the expression of MMP-1 and IL-6 in UVB-exposed skin. Conclusions Altogether, this in vivo study demonstrates the photoaging-protective properties of CH-MSS, aligning with previous in vitro data. Thus, MSS-CH emerges as a strong candidate for use as an ingredient in nutraceuticals and biocosmetics.

Funder

Research Grant from Indonesian Ministry of Education, Culture, Research, and Technology, Indonesia

Publisher

Walter de Gruyter GmbH

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3