Affiliation:
1. Department of Cytology, Embryology and Histology , Azerbaijan Medical University , S. Vurgun Street , Baku 1102 , Azerbaijan
Abstract
Abstract
Extensive human studies and animal models show that chronic immune system stimulation involving microglia, inflammasome, complement activation, synthesis of cytokines, and reactive oxygen species exacerbates neurodegeneration in Alzheimer’s disease (AD) and other tauopathies. Abnormalities in tau, Aβ, and microglial activation are frequently observed in dementia patients and indicate that these elements may work in concert to cause cognitive impairment. Contradicting reports from postmortem studies demonstrating the presence of Aβ aggregates in the brains of cognitively healthy individuals, as well as other investigations, show that tau aggregation is more strongly associated with synapse loss, neurodegeneration, and cognitive decline than amyloid pathology. Tau association with microtubules’ surface promotes their growth and maintains their assembly, dynamicity, and stability. In contrast, the reduced affinity of hyperphosphorylated and mislocalized tau to microtubules leads to axonal deficits and neurofibrillary tangles (NFTs). Loss of microglial neuroprotective and phagocytic functions, as indicated by the faulty clearance of amyloid plaques, as well as correlations between microglial activation and tau tangle spread, all demonstrate the critical involvement of malfunctioning microglia in driving tau propagation. This review discusses the recent reports on the contribution of microglial cells to the development and progression of tau pathology. The detailed study of pathogenic mechanisms involved in interactions between neuroinflammation and tau spread is critical in identifying the targets for efficacious treatment strategies in AD.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献