Comparison of data-driven thresholding methods using directed functional brain networks

Author:

Manickam Thilaga1,Ramasamy Vijayalakshmi2ORCID,Doraisamy Nandagopal3

Affiliation:

1. Department of Mathematics, Amrita School of Physical Sciences , 77649 Amrita Vishwa Vidyapeetham , Coimbatore , Tamilnadu 641112 , India

2. College of Engineering and Computing , Georgia Southern University , Statesboro , GA 30458 , USA

3. Cognitive Neuroengineering Laboratory, School of Information Technology and Mathematical Sciences, Division of IT, Engineering and the Environments , University of South Australia , Adelaide 5000 , Australia

Abstract

Abstract Over the past two centuries, intensive empirical research has been conducted on the human brain. As an electroencephalogram (EEG) records millisecond-to-millisecond changes in the electrical potentials of the brain, it has enormous potential for identifying useful information about neuronal transactions. The EEG data can be modelled as graphs by considering the electrode sites as nodes and the linear and nonlinear statistical dependencies among them as edges (with weights). The graph theoretical modelling of EEG data results in functional brain networks (FBNs), which are fully connected (complete) weighted undirected/directed networks. Since various brain regions are interconnected via sparse anatomical connections, the weak links can be filtered out from the fully connected networks using a process called thresholding. Multiple researchers in the past decades proposed many thresholding methods to gather more insights about the influential neuronal connections of FBNs. This paper reviews various thresholding methods used in the literature for FBN analysis. The analysis showed that data-driven methods are unbiased since no arbitrary user-specified threshold is required. The efficacy of four data-driven thresholding methods, namely minimum spanning tree (MST), minimum connected component (MCC), union of shortest path trees (USPT), and orthogonal minimum spanning tree (OMST), in characterizing cognitive behavior of the normal human brain is analysed using directed FBNs constructed from EEG data of different cognitive load states. The experimental results indicate that both MCC and OMST thresholding methods can detect cognitive load-induced changes in the directed functional brain networks.

Funder

University of South Australia, Adelaide, Australia in collaboration with the Cognitive Neuro Engineering Laboratory

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3