Metabolic dysregulation of tricarboxylic acid cycle and oxidative phosphorylation in glioblastoma
Author:
Trejo-Solís Cristina1, Serrano-García Norma1, Castillo-Rodríguez Rosa Angelica2, Robledo-Cadena Diana Xochiquetzal34, Jimenez-Farfan Dolores5, Marín-Hernández Álvaro34, Silva-Adaya Daniela1, Rodríguez-Pérez Citlali Ekaterina1, Gallardo-Pérez Juan Carlos34
Affiliation:
1. Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Neurobiología Molecular y Celular, Laboratorio de Neurofarmacología Molecular y Nanotecnología , Instituto Nacional de Neurología y Neurocirugía , Ciudad de Mexico 14269 , Mexico 2. CICATA Unidad Morelos , Instituto Politécnico Nacional, Boulevard de la Tecnología , 1036 Z-1, P 2/2, Atlacholoaya , Xochitepec 62790 , Mexico 3. Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica , Instituto Nacional de Cardiología , Ciudad de México 14080 , Mexico 4. Facultad de Ciencias , Universidad Nacional Autónoma de México , Coyoacán , 04510 , Ciudad de México , Mexico 5. Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología , Universidad Nacional Autónoma de México , Ciudad de Mexico 04510 , Mexico
Abstract
Abstract
Glioblastoma multiforme (GBM) exhibits genetic alterations that induce the deregulation of oncogenic pathways, thus promoting metabolic adaptation. The modulation of metabolic enzyme activities is necessary to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates essential for fulfilling the biosynthetic needs of glioma cells. Moreover, the TCA cycle produces intermediates that play important roles in the metabolism of glucose, fatty acids, or non-essential amino acids, and act as signaling molecules associated with the activation of oncogenic pathways, transcriptional changes, and epigenetic modifications. In this review, we aim to explore how dysregulated metabolic enzymes from the TCA cycle and oxidative phosphorylation, along with their metabolites, modulate both catabolic and anabolic metabolic pathways, as well as pro-oncogenic signaling pathways, transcriptional changes, and epigenetic modifications in GBM cells, contributing to the formation, survival, growth, and invasion of glioma cells. Additionally, we discuss promising therapeutic strategies targeting key players in metabolic regulation. Therefore, understanding metabolic reprogramming is necessary to fully comprehend the biology of malignant gliomas and significantly improve patient survival.
Publisher
Walter de Gruyter GmbH
Reference248 articles.
1. Abla, H., Sollazzo, M., Gasparre, G., Iommarini, L., and Porcelli, A.M. (2020). The multifaceted contribution of alpha-ketoglutarate to tumor progression: an opportunity to exploit? Semin. Cell Dev. Biol. 98: 26–33, https://doi.org/10.1016/j.semcdb.2019.05.031. 2. Agnihotri, S. and Zadeh, G. (2016). Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions. Neuro Oncol. 18: 160–172, https://doi.org/10.1093/neuonc/nov125. 3. Ahluwalia, M.S., de Groot, J., Liu, W.M., and Gladson, C.L. (2010). Targeting SRC in glioblastoma tumors and brain metastases: rationale and preclinical studies. Cancer Lett. 298: 139–149, https://doi.org/10.1016/j.canlet.2010.08.014. 4. Ait-El-Mkadem, S., Dayem-Quere, M., Gusic, M., Chaussenot, A., Bannwarth, S., Francois, B., Genin, E.C., Fragaki, K., Volker-Touw, C.L.M., Vasnier, C., et al.. (2017). Mutations in MDH2, encoding a Krebs cycle enzyme, cause early-onset severe encephalopathy. Am. J. Hum. Genet. 100: 151–159, https://doi.org/10.1016/j.ajhg.2016.11.014. 5. Alderson, N.L., Wang, Y., Blatnik, M., Frizzell, N., Walla, M.D., Lyons, T.J., Alt, N., Carson, J.A., Nagai, R., Thorpe, S.R., et al.. (2006). S-(2-Succinyl)cysteine: a novel chemical modification of tissue proteins by a Krebs cycle intermediate. Arch. Biochem. Biophys. 450: 1–8, https://doi.org/10.1016/j.abb.2006.03.005.
|
|