Patient-derived iPSCs, a reliable in vitro model for the investigation of Alzheimer’s disease

Author:

Amponsah Asiamah Ernest12,Guo Ruiyun12,Kong Desheng12,Feng Baofeng12,He Jingjing12,Zhang Wei12,Liu Xin12,Du Xiaofeng12,Ma Zhenhuan12,Liu Boxin12,Ma Jun123,Cui Huixian123

Affiliation:

1. Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University , Shijiazhuang , Hebei Province 050017 , China

2. Hebei Research Center for Stem Cell Medical Translational Engineering , Shijiazhuang , Hebei Province 050017 , China

3. Human Anatomy Department , Hebei Medical University , Shijiazhuang , Hebei Province 050017 , China

Abstract

Abstract Alzheimer’s disease (AD) is a neurodegenerative disease and a common cause of dementia among elderly individuals. The disease is characterized by progressive cognitive decline, accumulation of senile amyloid plaques and neurofibrillary tangles, oxidative stress, and inflammation. Human-derived cell models of AD are scarce, and over the years, non-human-derived models have been developed to recapitulate clinical AD, investigate the disease’s pathogenesis and develop therapies for the disease. Several pharmacological compounds have been developed for AD based on findings from non-human-derived cell models; however, these pharmacological compounds have failed at different phases of clinical trials. This necessitates the application of human-derived cell models, such as induced pluripotent stem cells (iPSCs) in their optimized form in AD mechanistic studies and preclinical drug testing. This review provides an overview of AD and iPSCs. The AD-relevant phenotypes of iPSC-derived AD brain cells and the usefulness of iPSCs in AD are highlighted. Finally, the various recommendations that have been made to enhance iPSC/AD modelling are discussed.

Publisher

Walter de Gruyter GmbH

Subject

General Neuroscience

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3