Author:
Kanno Haruo,Pearse Damien D.,Ozawa Hiroshi,Itoi Eiji,Bunge Mary Bartlett
Abstract
AbstractTransplantation of Schwann cells (SCs) is a promising therapeutic strategy for spinal cord repair. The introduction of SCs into the injured spinal cord has been shown to reduce tissue loss, promote axonal regeneration, and facilitate myelination of axons for improved sensorimotor function. The pathology of spinal cord injury (SCI) comprises multiple processes characterized by extensive cell death, development of a milieu inhibitory to growth, and glial scar formation, which together limits axonal regeneration. Many studies have suggested that significant functional recovery following SCI will not be possible with a single therapeutic strategy. The use of additional approaches with SC transplantation may be needed for successful axonal regeneration and sufficient functional recovery after SCI. An example of such a combination strategy with SC transplantation has been the complementary administration of neuroprotective agents/growth factors, which improves the effect of SCs after SCI. Suspension of SCs in bioactive matrices can also enhance transplanted SC survival and increase their capacity for supporting axonal regeneration in the injured spinal cord. Inhibition of glial scar formation produces a more permissive interface between the SC transplant and host spinal cord for axonal growth. Co-transplantation of SCs and other types of cells such as olfactory ensheathing cells, bone marrow mesenchymal stromal cells, and neural stem cells can be a more effective therapy than transplantation of SCs alone following SCI. This article reviews some of the evidence supporting the combination of SC transplantation with additional strategies for SCI repair and presents a prospectus for achieving better outcomes for persons with SCI.
Cited by
99 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献