Predictive models of the 2015 Rugby World Cup: accuracy and application

Author:

O’Donoghue P.1,Ball D.1,Eustace J.1,McFarlan B.1,Nisotaki M.1

Affiliation:

1. Cardiff School of Sport, Cardiff Metropolitan University, Cyncoed Campus, Cardiff, Wales, CF23 6XD, UK.

Abstract

Abstract The current investigation compared 12 models of outcomes of international rugby union matches and then used the most accurate model to investigate performances within the 2015 Rugby World Cup. The underlying linear regression models were used within a simulation package that introduced random variability about performance evidenced by the residual distribution of the regression analyses. Each model was used within 10,000 simulations of the 2015 Rugby World Cup from which match outcome and team progression statistics were recorded. The most accurate model with respect to the actual 2015 tournament was developed using data from all seven previous tournaments rather than restricting cases to the most recent three tournaments. The model was more accurate when the data used violated the assumptions of linear regression rather than transforming variables to satisfy the assumptions. The model included World ranking points as a predictor variable and was more accurate than corresponding models that represented relative home advantage as well. The most accurate model used separate models for the pool and knockout stage matches although the 9 models that separating these match types were less accurate on average than when the two match types were considered together. This model was used to investigate properties of the 2015 Rugby World Cup. The tournament disadvantaged three teams in the World’s top 5 who were drawn in the same pool. Teams ranked in the World’s top 7 did not perform as well as predicted while teams ranked 16th and below performed better than predicted suggesting that the strength in depth in international rugby union is increasing. There was a small effect of having additional recovery days from the previous match compared to the opponents which was worth 4.1 points. The information produced by this research should be considered by those design tournaments such as the Rugby World Cup.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering,General Computer Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3