Affiliation:
1. Dipartimento di Scienze di Base e Applicate per l’ Ingegneria, “Sapienza”, Università di Roma, Via Scarpa 16, 00161 Roma, Italy
Abstract
Abstract
We deal with existence,
uniqueness and regularity for solutions of the boundary value problem
{
ℒ
s
u
=
μ
in
Ω
,
u
(
x
)
=
0
on
ℝ
n
\
Ω
,
$\left\{\begin{aligned} \displaystyle\mathcal{L}^{s}u&\displaystyle=\mu&&%
\displaystyle\text{in }\Omega,\\
\displaystyle u(x)&\displaystyle=0&&\displaystyle\text{on }\mathbb{R}^{n}%
\backslash\Omega,\end{aligned}\right.$
where Ω is a bounded domain of
ℝ
n
${\mathbb{R}^{n}}$
, μ is a bounded Radon measure on Ω, and
ℒ
s
${\mathcal{L}^{s}}$
is a non-local operator of fractional order s whose kernel K is comparable with the one of the fractional Laplacian.
Funder
Istituto Nazionale di Alta Matematica (INdAM)
Subject
General Mathematics,Statistical and Nonlinear Physics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献