Affiliation:
1. Department of Mathematics, Northwest Normal University, Lanzhou 730070, P. R. China
Abstract
Abstract
We show the existence and multiplicity of radial solutions for the problems with minimum and maximum involving mean curvature operators in the Minkowski space:
{
div
(
ϕ
N
(
∇
v
)
)
=
F
(
v
)
(
|
x
|
)
for a.e.
R
1
<
|
x
|
<
R
2
,
x
∈
ℝ
N
,
N
≥
2
,
min
{
v
(
x
)
∣
R
1
≤
|
x
|
≤
R
2
}
=
A
,
max
{
v
(
x
)
∣
R
1
≤
|
x
|
≤
R
2
}
=
B
,
$\left\{\begin{aligned} &\displaystyle\operatorname{div}(\phi_{N}(\nabla v))=F(%
v)(\lvert x\rvert)\quad\text{for a.e. }R_{1}<\lvert x\rvert<R_{2},\,x\in%
\mathbb{R}^{N},\,N\geq 2,\\
&\displaystyle\min\bigl{\{}v(x)\mid R_{1}\leq\lvert x\rvert\leq R_{2}\bigr{\}}%
=A,\quad\max\bigl{\{}v(x)\mid R_{1}\leq\lvert x\rvert\leq R_{2}\bigr{\}}=B,%
\end{aligned}\right.$
where
ϕ
N
(
z
)
=
z
/
1
-
|
z
|
2
${\phi_{N}(z)=z/\sqrt{1-\lvert z\rvert^{2}}}$
,
z
∈
ℝ
N
${z\in\mathbb{R}^{N}}$
,
R
1
,
R
2
,
A
,
B
∈
ℝ
${R_{1},R_{2},A,B\in\mathbb{R}}$
are constants satisfying
1
<
R
1
<
R
2
-
1
${1<R_{1}<R_{2}-1}$
and
A
<
B
${A<B}$
;
|
⋅
|
${\lvert\cdot\rvert}$
denotes the Euclidean norm in
ℝ
N
${\mathbb{R}^{N}}$
, and
F
:
C
1
[
R
1
,
R
2
]
→
L
1
[
R
1
,
R
2
]
${F:C^{1}[R_{1},R_{2}]\to L^{1}[R_{1},R_{2}]}$
is an unbounded operator. By using the Leray–Schauder degree theory and the Borsuk theorem, we prove that the problem has at least two different radial solutions.
Funder
National Natural Science Foundation of China
Chinese Universities Scientific Fund
Natural Science Foundation of Gansu Province
Subject
General Mathematics,Statistical and Nonlinear Physics