Affiliation:
1. School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P. R. China
2. College of mathematics and physics, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
Abstract
Abstract
In this paper, we investigate the following double
critical Hardy–Sobolev–Maz’ya problem:
{
-
Δ
u
=
μ
|
u
|
2
*
(
t
)
-
2
u
|
y
|
t
+
|
u
|
2
*
(
s
)
-
2
u
|
y
|
s
+
a
(
x
)
u
in
Ω
,
u
=
0
on
∂
Ω
,
$\left\{\begin{aligned} &\displaystyle{-}\Delta u=\mu\frac{|u|^{2^{*}(t)-2}u}{|%
y|^{t}}+\frac{|u|^{2^{*}(s)-2}u}{|y|^{s}}+a(x)u&&\displaystyle\text{in }\Omega%
,\\
&\displaystyle u=0&&\displaystyle\text{on }\partial\Omega,\end{aligned}\right.$
where
μ
≥
0
${\mu\geq 0}$
,
a
(
x
)
>
0
${a(x)>0}$
,
2
*
(
t
)
=
2
(
N
-
t
)
N
-
2
${2^{*}(t)=\frac{2(N-t)}{N-2}}$
,
2
*
(
s
)
=
2
(
N
-
s
)
N
-
2
${2^{*}(s)=\frac{2(N-s)}{N-2}}$
,
0
≤
t
<
s
<
2
${0\leq t<s<2}$
,
x
=
(
y
,
z
)
∈
ℝ
k
×
ℝ
N
-
k
${x=(y,z)\in\mathbb{R}^{k}\times\mathbb{R}^{N-k}}$
,
2
≤
k
<
N
,
(
0
,
z
*
)
∈
Ω
¯
$2\leq k<N,(0,z^{*})\in\bar{\Omega}$
and
Ω
is an open bounded domain in
ℝ
N
${\mathbb{R}^{N}}$
.
By applying an abstract theorem presented in [42],
we prove that
if
N
>
6
+
t
${N>6+t}$
when
μ
>
0
,
${\mu>0,}$
and
N
>
6
+
s
${N>6+s}$
when
μ
=
0
,
${\mu=0,}$
and
Ω satisfies some geometric conditions,
then the above problem has infinitely many sign-changing solutions.
The main tool is to estimate the Morse indices of these nodal solutions.
Funder
National Natural Science Foundation of China
Subject
General Mathematics,Statistical and Nonlinear Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献