Obstacle Problems and Maximal Operators

Author:

Blanc Pablo1,Pinasco Juan P.1,Rossi Julio D.1

Affiliation:

1. Departmento de Mathematica, FCEyN, Buenos Aires University, Ciudad Universitaria, Pab 1 (1428), Buenos Aires, Argentina

Abstract

Abstract Fix two differential operators L 1 ${L_{1}}$ and L 2 ${L_{2}}$ , and define a sequence of functions inductively by considering u 1 ${u_{1}}$ as the solution to the Dirichlet problem for an operator L 1 ${L_{1}}$ and then u n ${u_{n}}$ as the solution to the obstacle problem for an operator L i ${L_{i}}$ ( i = 1 , 2 ${i=1,2}$ alternating them) with obstacle given by the previous term u n - 1 ${u_{n-1}}$ in a domain Ω and a fixed boundary datum g on Ω ${\partial\Omega}$ . We show that in this way we obtain an increasing sequence that converges uniformly to a viscosity solution to the minimal operator associated with L 1 ${L_{1}}$ and L 2 ${L_{2}}$ , that is, the limit u verifies min { L 1 u , L 2 u } = 0 ${\min\{L_{1}u,L_{2}u\}=0}$ in Ω with u = g ${u=g}$ on Ω ${\partial\Omega}$ .

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

Reference13 articles.

1. Andersson J., Lindgren E. and Shahgholian H., Optimal regularity for the obstacle problem for the p-Laplacian, preprint 2015, http://arxiv.org/abs/1402.4953.

2. Blanc P., Pinasco J. P. and Rossi J. D., Maximal operators for the p-Laplacian family, preprint 2015, http://mate.dm.uba.ar/~jrossi/BlancPinascoRossi-sns.pdf.

3. Caffarelli L. A., The regularity of free boundaries in higher dimensions, Acta Math. 139 (1977), no. 3–4, 155–184.

4. Caffarelli L. A., The obstacle problem revisited, J. Fourier Anal. Appl. 4 (1998), no. 4–5, 383–402.

5. Caffarelli L. A. and Cabre X., Fully Nonlinear Elliptic Equations, Amer. Math. Soc. Colloq. Publ. 43, American Mathematical Society, Providence, 1995.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Monotone iterations of two obstacle problems with different operators;Journal of Elliptic and Parabolic Equations;2024-03-07

2. Numerical solutions for Taylor and Runge-Kutta methods with ordinary differential equations-comparing to analytical solutions;INTELLIGENT BIOTECHNOLOGIES OF NATURAL AND SYNTHETIC BIOLOGICALLY ACTIVE SUBSTANCES: XIV Narochanskie Readings;2023

3. Numerical approximation of equations involving minimal/maximal operators by successive solution of obstacle problems;Journal of Computational and Applied Mathematics;2018-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3