Symbolic Algorithm of the Functional-Discrete Method for a Sturm–Liouville Problem with a Polynomial Potential

Author:

Makarov Volodymyr1ORCID,Romaniuk Nataliia1ORCID

Affiliation:

1. Department of Numerical Mathematics , Institute of Mathematics of National Academy of Sciences of Ukraine , 3 Tereshchenkivs’ka Str., 01004 Kyiv -4 , Ukraine

Abstract

Abstract A new symbolic algorithmic implementation of the general scheme of the exponentially convergent functional-discrete method is developed and justified for the Sturm–Liouville problem on a finite interval for the Schrödinger equation with a polynomial potential and the boundary conditions of Dirichlet type. The algorithm of the general scheme of our method is developed when the potential function is approximated by the piecewise-constant function. Our algorithm is symbolic and operates with the decomposition coefficients of the eigenfunction corrections in some basis. The number of summands in these decompositions depends on the degree of the potential polynomial and on the correction number. Our method uses the algebraic operations only and does not need solutions of any boundary value problems and computations of any integrals unlike the previous version. A numerical example illustrates the theoretical results.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis

Reference29 articles.

1. E. L. Allgower, Introduction to Numerical Continuation Methods, Colorado State University, Colorado, 1990.

2. M. A. Armstrong, Basic Topology, Undergrad. Texts Math., Springer, New York, 1983.

3. F. V. Atkinson, Discrete and Continuous Boundary Problems, “Mir”, Moskau, 1968.

4. B. J. Bandyrskij, V. L. Makarov and O. L. Ukhanev, FD-method for Sturm–Liouville problem. Exponential convergence rate, Numer. Appl. Math. 1 (2000), no. 85, 1–60.

5. N. Bogoliouboff and N. Kryloff, Sopra il metodo dei coefficienti costanti (metodo dei tronconi) per l’integrazione approssimata delle equazioni differenziali della fisica matematica, Boll. Unione Mat. Ital. 7 (1928), 72–76.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3