Hybrid Discontinuous Galerkin Discretisation and Domain Decomposition Preconditioners for the Stokes Problem

Author:

Barrenechea Gabriel R.1,Bosy Michał1ORCID,Dolean Victorita2ORCID,Nataf Frédéric3,Tournier Pierre-Henri3

Affiliation:

1. Department of Mathematics and Statistics , University of Strathclyde , 26 Richmond Street, G1 1XH Glasgow , United Kingdom

2. Department of Mathematics and Statistics , University of Strathclyde , 26 Richmond Street, G1 1XH Glasgow , United Kingdom , and Faculté des Sciences, University Côte d’Azur, Lab. J-A Dieudonné, Parc Valrose, 06108 Nice Cedex 02, France

3. CNRS, INRIA , Laboratoire Jacques-Louis Lions , Sorbonne Université , Université Paris-Diderot SPC , équipe Alpines, 75005 Paris , France

Abstract

Abstract Solving the Stokes equation by an optimal domain decomposition method derived algebraically involves the use of nonstandard interface conditions whose discretisation is not trivial. For this reason the use of approximation methods such as hybrid discontinuous Galerkin appears as an appropriate strategy: on the one hand they provide the best compromise in terms of the number of degrees of freedom in between standard continuous and discontinuous Galerkin methods, and on the other hand the degrees of freedom used in the nonstandard interface conditions are naturally defined at the boundary between elements. In this paper, we introduce the coupling between a well chosen discretisation method (hybrid discontinuous Galerkin) and a novel and efficient domain decomposition method to solve the Stokes system. We present the detailed analysis of the hybrid discontinuous Galerkin method for the Stokes problem with nonstandard boundary conditions. The full stability and convergence analysis of the discretisation method is presented, and the results are corroborated by numerical experiments. In addition, the advantage of the new preconditioners over more classical choices is also supported by numerical experiments.

Funder

Centre for Numerical Analysis and Intelligent Software

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis

Reference31 articles.

1. B. Ayuso de Dios, F. Brezzi, L. D. Marini, J. Xu and L. Zikatanov, A simple preconditioner for a discontinuous Galerkin method for the Stokes problem, J. Sci. Comput. 58 (2014), no. 3, 517–547.

2. D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications, Springer Ser. Comput. Math. 44, Springer, Heidelberg, 2013.

3. X.-C. Cai and M. Sarkis, A restricted additive Schwarz preconditioner for general sparse linear systems, SIAM J. Sci. Comput. 21 (1999), no. 2, 792–797.

4. T. Cluzeau, V. Dolean, F. Nataf and A. Quadrat, Preconditionning techniques for systems of partial differential equations based on algebraic methods, Technical Report 7953, INRIA, 2012, http://hal.inria.fr/hal-00694468.

5. T. Cluzeau, V. Dolean, F. Nataf and A. Quadrat, Symbolic techniques for domain decomposition methods, Domain Decomposition Methods in Science and Engineering XX, Springer, Berlin (2013), 27–38.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3