A Priori Analysis of an Anisotropic Finite Element Method for Elliptic Equations in Polyhedral Domains

Author:

Li Hengguang1,Nicaise Serge2

Affiliation:

1. Department of Mathematics , Wayne State University , Detroit , MI 48202 , USA

2. LAMAV , Université Polytechnique Hauts-de-France , FR CNRS 2956, F-59313 – Valenciennes Cedex 9 , France

Abstract

Abstract Consider the Poisson equation in a polyhedral domain with mixed boundary conditions. We establish new regularity results for the solution with possible vertex and edge singularities with interior data in usual Sobolev spaces H σ {H^{\sigma}} with σ [ 0 , 1 ) {\sigma\in[0,1)} . We propose anisotropic finite element algorithms approximating the singular solution in the optimal convergence rate. In particular, our numerical method involves anisotropic graded meshes with fewer geometric constraints but lacking the maximum angle condition. Optimal convergence on such meshes usually requires the pure Dirichlet boundary condition. Thus, a by-product of our result is to extend the application of these anisotropic meshes to broader practical computations with the price to have “smoother” interior data. Numerical tests validate the theoretical analysis.

Funder

National Science Foundation

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis

Reference24 articles.

1. T. Apel, Anisotropic Finite Elements: Local Estimates and Applications, Adv. Numer. Math., B. G. Teubner, Stuttgart, 1999.

2. T. Apel and B. Heinrich, Mesh refinement and windowing near edges for some elliptic problem, SIAM J. Numer. Anal. 31 (1994), no. 3, 695–708.

3. T. Apel and S. Nicaise, The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges, Math. Methods Appl. Sci. 21 (1998), no. 6, 519–549.

4. T. Apel, A.-M. Sändig and J. R. Whiteman, Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains, Math. Methods Appl. Sci. 19 (1996), no. 1, 63–85.

5. T. Apel and J. Schöberl, Multigrid methods for anisotropic edge refinement, SIAM J. Numer. Anal. 40 (2002), no. 5, 1993–2006.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anisotropic Error Estimates in Polyhedral Domains;Graded Finite Element Methods for Elliptic Problems in Nonsmooth Domains;2022

2. Singularities and Graded Mesh Algorithms;Graded Finite Element Methods for Elliptic Problems in Nonsmooth Domains;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3