Multigrid Methods Based on Hodge Decomposition for a Quad-Curl Problem

Author:

Brenner Susanne C.1,Cui Jintao2,Sung Li-yeng1

Affiliation:

1. Department of Mathematics and Center for Computation and Technology , Louisiana State University , Baton Rouge , LA 70803 , USA

2. Department of Applied Mathematics , The Hong Kong Polytechnic University , Hung Hom , Hong Kong

Abstract

Abstract In this paper we investigate multigrid methods for a quad-curl problem on graded meshes. The approach is based on the Hodge decomposition. The solution for the quad-curl problem is approximated by solving standard second-order elliptic problems and optimal error estimates are obtained on graded meshes. We prove the uniform convergence of the multigrid algorithm for the resulting discrete problem. The performance of these methods is illustrated by numerical results.

Funder

National Natural Science Foundation of China

Division of Mathematical Sciences

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis

Reference39 articles.

1. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci. 21 (1998), no. 9, 823–864.

2. I. Babuška, R. B. Kellogg and J. Pitkäranta, Direct and inverse error estimates for finite elements with mesh refinements, Numer. Math. 33 (1979), no. 4, 447–471.

3. R. E. Bank, A comparison of two multilevel iterative methods for nonsymmetric and indefinite elliptic finite element equations, SIAM J. Numer. Anal. 18 (1981), no. 4, 724–743.

4. R. E. Bank and T. Dupont, An optimal order process for solving finite element equations, Math. Comp. 36 (1981), no. 153, 35–51.

5. D. Biskamp, Magnetic Reconnection in Plasmas, Cambridge University Press, Cambridge, 2005.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Hodge Decomposition Finite Element Method for the Quad-Curl Problem on Polyhedral Domains;Journal of Scientific Computing;2024-08-01

2. Superconvergence of a Nonconforming Brick Element for the Quad-Curl Problem;International Journal of Computational Methods;2024-06-12

3. Superconvergence Analysis of Curlcurl-Conforming Elements on Rectangular Meshes;Journal of Scientific Computing;2023-04-11

4. Three families of grad div-conforming finite elements;Numerische Mathematik;2022-10-11

5. A priori and a posteriori error estimates for the quad-curl eigenvalue problem;ESAIM: Mathematical Modelling and Numerical Analysis;2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3