On Convergence of Difference Schemes for Dirichlet IBVP for Two-Dimensional Quasilinear Parabolic Equations with Mixed Derivatives and Generalized Solutions

Author:

Matus Piotr1,Poliakov Dmitriy2,Hieu Le Minh3

Affiliation:

1. Institute of Mathematics and Computer Science , The John Paul II Catholic University of Lublin , Al. Raclawickie 14, 20-950 Lublin , Poland ; and Institute of Mathematics, NAS of Belarus, 11 Surganov St., 220072 Minsk, Belarus

2. Institute of Mathematics , NAS of Belarus , 11 Surganov St., 220072 Minsk , Belarus

3. University of Economics , The University of Danang , 71 Ngu Hanh Son Str., 550000 Danang , Vietnam

Abstract

Abstract For Dirichlet initial boundary value problem (IBVP) for two-dimensional quasilinear parabolic equations with mixed derivatives monotone linearized difference scheme is constructed. The ellipticity conditions c 1 α = 1 2 ξ α 2 α , β = 1 2 k α β ( u ) ξ α ξ β c 2 α = 1 2 ξ α 2 c_{1}\sum_{\alpha=1}^{2}\xi_{\alpha}^{2}\leq\sum_{\alpha,\beta=1}^{2}k_{\alpha% \beta}(u)\xi_{\alpha}\xi_{\beta}\leq c_{2}\sum_{\alpha=1}^{2}\xi_{\alpha}^{2} are assumed to be fulfilled for the sign alternating solution u ( 𝐱 , t ) D ¯ ( u ) {u(\mathbf{x},t)\in\bar{D}(u)} only in the domain of exact solution values (unbounded nonlinearity). On the basis of the proved new corollaries of the maximum principle, not only two-sided estimates for the approximate solution y but also its belonging to the domain of exact solution values are established. We assume that the solution is continuous and its first derivatives u x i {\frac{\partial u}{\partial x_{i}}} have discontinuities of the first kind in the neighborhood of the finite number of discontinuity lines. No smoothness of the time derivative is assumed. The convergence of an approximate solution to a generalized solution of a differential problem in the grid norm L 2 {L_{2}} is proved.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis

Reference34 articles.

1. V. N. Abrašin, Difference schemes for a nonlinear parabolic equation that is not solved for the highest derivatives, Differ. Equ. 11 (1976), 524–533.

2. V. N. Abrašin, Difference schemes for nonlinear hyperbolic equations. II, Differ. Equ. 11 (1976), 224–235.

3. G. Akrivis, M. Crouzeix and C. Makridakis, Implicit-explicit multistep methods for quasilinear parabolic equations, Numer. Math. 82 (1999), no. 4, 521–541.

4. A. A. Amosov and A. A. Zlotnik, A difference scheme for equations of the one-dimensional movement of a viscous barotropic gas, Computational Processes and Systems. No. 4 (in Russian), “Nauka”, Moscow (1986), 192–218.

5. A. A. Amosov and A. A. Zlotnik, Difference schemes of the second order of accuracy for equations of the one-dimensional motion of a viscous gas, USSR Comput. Math. Math. Phys. 27 (1987), no. 4, 46–57.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3