An Efficient Algorithm for Computation of MHD Flow Ensembles

Author:

Mohebujjaman Muhammad1,Rebholz Leo G.2

Affiliation:

1. 1Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, USA

2. 2Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, USA

Abstract

AbstractAn efficient algorithm is proposed and studied for computing flow ensembles of incompressible magnetohydrodynamic (MHD) flows under uncertainties in initial or boundary data. The ensemble average of J realizations is approximated through a clever algorithm (adapted from a breakthrough idea of Jiang and Layton [23]) that, at each time step, uses the same matrix for each of the J systems solves. Hence, preconditioners need to be built only once per time step, and the algorithm can take advantage of block linear solvers. Additionally, an Elsässer variable formulation is used, which allows for a stable decoupling of each MHD system at each time step. We prove stability and convergence of the algorithm, and test it with two numerical experiments.

Funder

National Science Foundation

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis

Reference68 articles.

1. Ensemble calculations for time relaxation fluid flow models;Numer. Methods Partial Differential Equations,2016

2. MHD thermofluid issues of liquid-metal blankets: Phenomena and advances;Fusion Engrg. Des.,2010

3. Sensitivity analysis of convection of the 24 May 2002 IHOP case using very large ensembles;Monthly Weather Rev.,2006

4. Predicting probability distributions for surf height using an ensemble of mixture density networks;Proceedings of the 22nd International Conference on Machine Learning,2005

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3