Estimates of the Distance to the Set of Solenoidal Vector Fields and Applications to A Posteriori Error Control

Author:

Repin Sergey1

Affiliation:

1. 1V. A. Steklov Institute of Mathematics in St. Petersburg, Fontanka 27, 191011 St. Petersburg, Russia; and University of Jyväskylä, P.O. Box 35, FI-40014, Finland

Abstract

AbstractThe paper is concerned with computable estimates of the distance between a vector-valued function in the Sobolev space$W^{1,\gamma }(\Omega ,\mathbb {R}^d)$(where${\gamma \in (1,+\infty )}$and Ω is a bounded Lipschitz domain in ℝd) and the subspace${S^{1,\gamma }(\Omega ,\mathbb {R}^d)}$containing all divergence-free (solenoidal) vector functions. Derivation of these estimates is closely related to the stability theorem that establishes existence of a bounded operator inverse to the operator${\operatorname{div}}$. The constant in the respective stability inequality arises in the estimates of the distance to the set${S^{1,\gamma }(\Omega ,\mathbb {R}^d)}$. In general, it is difficult to find a guaranteed and realistic upper bound of this global constant. We suggest a way to circumvent this difficulty by using weak (integral mean) solenoidality conditions and localized versions of the stability theorem. They are derived for the case where Ω is represented as a union of simple subdomains (overlapping or non-overlapping), for which estimates of the corresponding stability constants are known. These new versions of the stability theorem imply estimates of the distance to${S^{1,\gamma }(\Omega ,\mathbb {R}^d)}$that involve only local constants associated with subdomains. Finally, the estimates are used for deriving fully computable a posteriori estimates for problems in the theory of incompressible viscous fluids.

Funder

RFBR

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis

Reference22 articles.

1. On spaces of solenoidal vectors Zap Nauchn Leningrad Mat;Piletskas;Otdel Inst Steklov,1980

2. Solution of the rst boundary value problem for the equation of continuity of an incompressible medium Soviet Math;Bogovskii;Dokl,1979

3. Minimization of functional majorant in a posteriori error analysis based on div ) multigrid - preconditioned CG method Adv Article ID;Valdman;Numer Anal,2009

4. Estimates of the deviations from the exact solutions for variational inequalities describing the stationary flow of certain viscous incompressible fluids Math;Fuchs;Methods Appl Sci,2010

5. Some problems of vector analysis and generalized formulations of boundary value problems for the Navier Stokes equation Zap Nauchn Leningrad Mat;Ladyzenskaja;Otdel Inst Steklov,1976

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3