The Discrete-Dual Minimal-Residual Method (DDMRes) for Weak Advection-Reaction Problems in Banach Spaces

Author:

Muga Ignacio1ORCID,Tyler Matthew J. W.2,van der Zee Kristoffer G.2ORCID

Affiliation:

1. Instituto de Matemáticas , Pontificia Universidad Católica de Valparaíso , Casilla 4059 , Valparaíso , Chile

2. School of Mathematical Sciences , University of Nottingham , University Park , Nottingham , NG72RD , United Kingdom

Abstract

Abstract We propose and analyze a minimal-residual method in discrete dual norms for approximating the solution of the advection-reaction equation in a weak Banach-space setting. The weak formulation allows for the direct approximation of solutions in the Lebesgue L p {L^{p}} -space, 1 < p < {1<p<\infty} . The greater generality of this weak setting is natural when dealing with rough data and highly irregular solutions, and when enhanced qualitative features of the approximations are needed. We first present a rigorous analysis of the well-posedness of the underlying continuous weak formulation, under natural assumptions on the advection-reaction coefficients. The main contribution is the study of several discrete subspace pairs guaranteeing the discrete stability of the method and quasi-optimality in L p {L^{p}} , and providing numerical illustrations of these findings, including the elimination of Gibbs phenomena, computation of optimal test spaces, and application to 2-D advection.

Funder

London Mathematical Society

Fondo Nacional de Desarrollo Científico y Tecnológico

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis

Reference37 articles.

1. P. Azérad, Analyse des équations de Navier–Stokes en bassin peu profond et de l’équation de transport, PhD thesis, Université de Neuchâtel, Neuchâtel, 1996.

2. P. Azérad and J. Pousin, Inégalité de Poincaré courbe pour le traitement variationnel de l’équation de transport, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 8, 721–727.

3. C. Bardos, A. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations 4 (1979), no. 9, 1017–1034.

4. H. Beirão da Veiga, Existence results in Sobolev spaces for a stationary transport equation, Ric. Mat. 36 (1987), suppl., 173–184.

5. H. Beirão da Veiga, Boundary-value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow, Rend. Semin. Mat. Univ. Padova 79 (1988), 247–273.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3