Equilibrated Stress Tensor Reconstruction and A Posteriori Error Estimation for Nonlinear Elasticity

Author:

Botti Michele1,Riedlbeck Rita2

Affiliation:

1. University of Montpellier , Institut Montpéllierain Alexander Grothendieck , 34095 Montpellier , France

2. EDF R&D , IMSIA , 91120 Palaiseau , France

Abstract

Abstract We consider hyperelastic problems and their numerical solution using a conforming finite element discretization and iterative linearization algorithms. For these problems, we present equilibrated, weakly symmetric, H ( div ) {H(\mathrm{div)}} -conforming stress tensor reconstructions, obtained from local problems on patches around vertices using the Arnold–Falk–Winther finite element spaces. We distinguish two stress reconstructions: one for the discrete stress and one representing the linearization error. The reconstructions are independent of the mechanical behavior law. Based on these stress tensor reconstructions, we derive an a posteriori error estimate distinguishing the discretization, linearization, and quadrature error estimates, and propose an adaptive algorithm balancing these different error sources. We prove the efficiency of the estimate, and confirm it on a numerical test with an analytical solution. We then apply the adaptive algorithm to a more application-oriented test, considering the Hencky–Mises and an isotropic damage model.

Funder

Agence Nationale de la Recherche

Bureau de Recherches Géologiques et Minières

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An a posteriori error analysis based on equilibrated stresses for finite element approximations of frictional contact;Computer Methods in Applied Mechanics and Engineering;2024-05

2. A posteriori error estimates via equilibrated stress reconstructions for contact problems approximated by Nitsche's method;Computers & Mathematics with Applications;2022-04

3. Stress Equilibration for Hyperelastic Models;Non-standard Discretisation Methods in Solid Mechanics;2022

4. Weakly symmetric stress equilibration and a posteriori error estimation for linear elasticity;Numerical Methods for Partial Differential Equations;2021-01-13

5. A Hybrid High-Order Discretization Method for Nonlinear Poroelasticity;Computational Methods in Applied Mathematics;2020-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3