Numerical Solution of Time-Dependent Problems with Fractional Power Elliptic Operator

Author:

Vabishchevich Petr N.1

Affiliation:

1. Nuclear Safety Institute , Russian Academy of Sciences , 52, B. Tulskaya,115191 Moscow ; and Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow , Russia

Abstract

Abstract An unsteady problem is considered for a space-fractional equation in a bounded domain. A first-order evolutionary equation involves a fractional power of an elliptic operator of second order. Finite element approximation in space is employed. To construct approximation in time, standard two-level schemes are used. The approximate solution at a new time-level is obtained as a solution of a discrete problem with the fractional power of the elliptic operator. A Padé-type approximation is constructed on the basis of special quadrature formulas for an integral representation of the fractional power elliptic operator using explicit schemes. A similar approach is applied in the numerical implementation of implicit schemes. The results of numerical experiments are presented for a test two-dimensional problem.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis

Reference45 articles.

1. L. Aceto and P. Novati, Rational approximation to the fractional Laplacian operator in reaction-diffusion problems, SIAM J. Sci. Comput. 39 (2017), no. 1, 214–228.

2. G. Acosta and J. P. Borthagaray, A fractional Laplace equation: Regularity of solutions and finite element approximations, SIAM J. Numer. Anal. 55 (2017), no. 2, 472–495.

3. M. S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes and G. N. Wells, The FEniCS project version 1.5, Arch. Numer. Softw. 3 (2015), no. 100.

4. A. Bonito and J. Pasciak, Numerical approximation of fractional powers of elliptic operators, Math. Comp. 84 (2015), no. 295, 2083–2110.

5. S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer, New York, 2008.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exponent Splitting Schemes for Evolution Equations with Fractional Powers of Operators;International Journal of Numerical Analysis and Modeling;2023-06

2. A Gauss-Laguerre approach for the resolvent of fractional powers;ETNA - Electronic Transactions on Numerical Analysis;2023

3. A Gaussian Method for the Square Root of Accretive Operators;Computational Methods in Applied Mathematics;2022-08-30

4. Exponentially Convergent Trapezoidal Rules to Approximate Fractional Powers of Operators;Journal of Scientific Computing;2022-04-04

5. Neumann fractional diffusion problems: BURA solution methods and algorithms;Mathematics and Computers in Simulation;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3