Inhibition of Photosystems I and II in Chilling-Sensitive and Chilling-Tolerant Plants under Light and Low-Temperature Stress

Author:

Barth Carina1,Krause G. Heinrich1

Affiliation:

1. Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf Universitätsstr. 1, D-40225 Düsseldorf, Germany

Abstract

The responses of photosystems (PS) I and II to light stress at 4 °C and 20 °C were studied in leaf discs from three chilling-sensitive plant species, Cucumis sativus, Cucurbita maxima and Nicotiana tabacum, and in the chilling-tolerant Spinacia oleracea. The chilling-sensitive plants were grown at 24 °C under 80 -120 μmol photons m-2 s-1 (Cucumis and Cucurbita) or 30 μmol photons m-2 s-1 (Nicotiana). Spinacia was cultivated outdoors during winter and early spring. The P700 absorbance change around 820 nm served as a relative measure of PSI activity. The potential efficiency of PSII was determined in dark-adapted leaf discs by means of the ratio of variable to maximum chlorophyll (Chl) a fluorescence emission (Fv/Fᴍ). In Cucurbita, Nicotiana and Spinacia, PSI was not or only slightly inhibited by 2 h illumination with 200 μmol m-2 s-1 at 4 °C or with 2000 μmol m-2 s-1 at 20 °C. In leaves of Cucurbita and Nicotiana, exposure to 2000 μmol photons m-2 s-1 at 4 °C resulted in a decline in PSI activity and potential PSII efficiency approximately to the same extent (about 50% within 2 h). In contrast, in Cucumis, both moderate and high light at low temperature caused a PSI inhibition that proceeded considerably faster than the decline in PSII efficiency. Such preferential photoinhibition of PSI was not observed in the other three species tested. In Spinacia, a lower susceptibility of PSI and PSII to photoinhibition at 4 °C was associated with a faster de-epoxidation kinetics of violaxanthin, as compared to the three chilling-sensitive species. In addition, leaves of Spinacia were characterized by a significantly larger pool of xanthophyll-cycle pigments and a higher content of β-carotene based on Chi a+b. When leaves of Cucurbita were preincubated with methylviologen, which catalyzes formation of superoxide anion radicals at the acceptor side of PSI, the decline in potential PSII efficiency under 2000 μmol photons m-2 s-1 at 20 °C and 4 °C was strongly enhanced, whereas the P700 signal was less affected. Our data demonstrate that in the species tested, PSI may be inhibited in vivo besides PSII under light stress, but preferential photoinhibition of PSI is not a general phenomenon in chilling-sensitive plants. At low temperatures, a reduced function of the xanthophyll cycle and of the antioxidative scavenging system might account for enhanced PSI and PSII inhibition in vivo

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3