Determination of Mechanical Energy Loss in Steady Flow by Means of Dissipation Power

Author:

Artichowicz Wojciech1,Sawicki Jerzy M.1

Affiliation:

1. Gdansk University of Technology, Faculty of Civil and Environmental Engineering, ul. G. Narutowicza 11/12, 80-233 Gdansk , Poland

Abstract

Abstract When systems of simple geometry like pipes or regular channels are considered, the mechanical energy loss of the fluid flow can be expressed by local and longitudinal empirical energy loss coefficients. However, in the case of large spatially distributed objects, there are no simple approaches to this task. In practice, general recommendations addressing different types of objects are used, but they usually provide very coarse estimates of energy loss. In this work, a new methodology for determination of mechanical energy loss in steady flowis proposed. This methodology is based on the observation that the magnitude of the power of energy dissipation in turbulent flow can be determined using the averaged flow velocity and turbulent viscosity coefficient. To highlight this possibility, an analysis of the magnitudes of the power of the main and fluctuating components of turbulent flow is presented. The correctness of the method is verified using an example of laminar and turbulent flows in a circular pipe. The results obtained show clearly that the proposed methodology can be used for mechanical energy loss determination in flow objects. This methodology can be used as a basis for mechanical energy loss determination in different types of flow objects.

Publisher

Walter de Gruyter GmbH

Subject

Water Science and Technology,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3