Abstract
AbstractBackground:Osteochondral injuries often lead to osteoarthritis of the affected joint. All established systems for refixation of osteochondral defects show certain disadvantages. To address the problem of reduced stability in resorbable implants, ultrasound-activated pins were developed. By ultrasound-activated melting of the tip of these implants, a more secure anchoring is assumed.Materials and methods:The aim of the study was to investigate if ultrasound-activated pins can provide secure fixation of osteochondral fragments compared to screws and conventional resorbable pins. In a biomechanical laboratory setting, osteochondral fragments of the medial femoral condyle of sheep were refixated with ultrasound-activated pins [US fused poly(L-lactide-co-D,L-lactide) (PLDLLA) pins], polydioxanone (PDA) pins and conventional titanium screws. Anchoring forces of the different fixation methods were examined, registered and compared concerning shear force and tensile force.Results:Concerning the pull out test, the US fused PLDLLA pins and titanium screws (~122 N and ~203 N) showed comparable good results, while the PDA pins showed significantly lower anchoring forces (~18 N). Examination of shear forces showed a significantly higher anchoring of the screws (~248 N) than the US fused PLDLLA pins (~218 N). Nevertheless, the US fused PLDLLA pins could significantly outperform the PDA pins (~68 N) concerning shear forces.Conclusion:The US fused PLDLLA pins demonstrated a comparable anchorage to the fixation with screws, but were free from the disadvantages of metal implants, i.e. the need for implant removal. The PDA pin application showed inferior biomechanical properties.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献