Differential mineralization of human dental pulp stem cells on diverse polymers

Author:

Apel Christian,Buttler Patricia,Salber Jochen,Dhanasingh Anandhan,Neuss Sabine

Abstract

Abstract In tissue engineering, biomaterials are used as scaffolds for spatial distribution of specific cell types. Biomaterials can potentially influence cell proliferation and extracellular matrix formation, both in positive and negative ways. The aim of the present study was to investigate and compare mineralized matrix production of human dental pulp stem cells (DPSC), cultured on 17 different well-characterized polymers. Osteogenic differentiation of DPSC was induced for 21 days on biomaterials using dexamethasone, L-ascorbic-acid-2-phosphate, and sodium β-glycerophosphate. Success of differentiation was analyzed by quantitative RealTime PCR, alkaline phosphatase (ALP) activity, and visualization of calcium accumulations by alizarin red staining with subsequent quantification by colorimetric method. All of the tested biomaterials of an established biomaterial bank enabled a mineralized matrix formation of the DPSC after osteoinductive stimulation. Mineralization on poly(tetrafluoro ethylene) (PTFE), poly(dimethyl siloxane) (PDMS), Texin, LT706, poly(epsilon-caprolactone) (PCL), polyesteramide type-C (PEA-C), hyaluronic acid, and fibrin was significantly enhanced (p<0.05) compared to standard tissue culture polystyrene (TCPS) as control. In particular, PEA-C, hyaluronic acid, and fibrin promoted superior mineralization values. These results were confirmed by ALP activity on the same materials. Different biomaterials differentially influence the differentiation and mineralized matrix formation of human DPSC. Based on the present results, promising biomaterial candidates for bone-related tissue engineering applications in combination with DPSC can be selected.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Reference94 articles.

1. Stem cells of dental origin: current research trends and key milestones towards clinical application;Stem Cells Int,2016

2. Scaffolds for dental pulp tissue Engineering;Adv Dent Res,2011

3. Differentiation ability of rat postnatal dental pulp cells in vitro.;Tissue Eng,2005

4. SHED: stem cells from human exfoliated deciduous teeth;Proc Natl Acad Sci USA,2003

5. Biomaterial microarrays: rapid, microscale screening of polymer-cell interaction;Biomaterials,2005

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3