Lignification of ray parenchyma cells in the xylem of Pinus densiflora. Part I: Microscopic investigation by POM, UV microscopy, and TOF-SIMS

Author:

Zheng Peiming,Aoki Dan,Yoshida Masato,Matsushita Yasuyuki,Imai Takanori,Fukushima Kazuhiko

Abstract

Abstract The lignification process from sapwood (sW) to heartwood (hW) in ray parenchyma cells (Pray) of Pinus densiflora has been analyzed by means of ultraviolet (UV) microscopy, acetyl bromide (CH3COBr) lignin determination, and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The cell wall layers were localized by polarized optical microscopy (POM). POM revealed that Pray have almost no secondary wall in sW and have only the outer layer of secondary wall (S1) in the transition zone (TZ) and hW. UV microscopic observations indicated that the secondary wall of Pray, which is in contact with ray tracheids (Trray), begins to lignify in sW, while the secondary wall of Pray, which is not in contact with Trray, is partially lignified in the TZ. The secondary wall of both types of Pray is completely lignified in hW. The CH3COBr lignin content in sW is slightly lower than that in hW. In the TOF-SIMS measurements, the relative intensities of the secondary ions of guaiacyl-lignin (G-lignin) in the rays in sW are significantly lower than those in hW.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Reference52 articles.

1. with argon gas cluster ion beams a comparison with;Rabbani;Anal Chem,2011

2. The cytoskeleton facilitates a three - dimensional symplasmic continuum in the long - lived ray and axial parenchyma cells of angiosperm trees;Chaffey;Planta,2001

3. Fukushima Can lignin be accurately measured;Hatfield;Crop Sci,2005

4. Control of wood structure In Plant Potential for Biotechnology Ed pp;Funada,2000

5. of heartwood formation In Molecular Biology of Wood Formation BIOS;Magel;Biochemistry physiology Cell,2000

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3