Signcryption schemes with insider security in an ideal permutation model

Author:

Bansal Tarun KumarORCID,Boyen Xavier,Pieprzyk Josef

Abstract

Abstract Signcryption aims to provide both confidentiality and authentication of messages more efficiently than performing encryption and signing independently. The “Commit-then-Sign & Encrypt” (CtS&E) method allows to perform encryption and signing in parallel. Parallel execution of cryptographic algorithms decreases the computation time needed to signcrypt messages. CtS&E uses weaker cryptographic primitives in a generic way to achieve a strong security notion of signcryption. Various message pre-processing schemes, also known as message padding, have been used in signcryption as a commitment scheme in CtS&E. Due to its elegance and versatility, the sponge structure turns out to be a useful tool for designing new padding schemes such as SpAEP [T. K. Bansal, D. Chang and S. K. Sanadhya, Sponge based CCA2 secure asymmetric encryption for arbitrary length message, Information Security and Privacy – ACISP 2015, Lecture Notes in Comput. Sci. 9144, Springer, Berlin 2015, 93–106], while offering further avenues for optimization and parallelism in the context of signcryption. In this work, we design a generic and efficient signcryption scheme featuring parallel encryption and signature on top of a sponge-based message-padding underlying structure. Unlike other existing schemes, the proposed scheme also supports arbitrarily long messages. We prove the construction secure when instantiated from weakly secure asymmetric primitives such as a trapdoor one-way encryption and a universal unforgeable signature. With a careful analysis and simple tweaks, we demonstrate how different combinations of weakly secure probabilistic and deterministic encryption and signature schemes can be used to construct a strongly secure signcryption scheme, further broadening the choices of underlying primitives to cover essentially any combination thereof. To the best of our knowledge, this is the first signcryption scheme based on the sponge structure that also offers strong security using weakly secure underlying asymmetric primitives, even deterministic ones, along with the ability to handle long messages, efficiently.

Funder

Australian Research Council

Narodowe Centrum Nauki

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications

Reference76 articles.

1. Keccak;Advances in Cryptology – EUROCRYPT 2013,2013

2. Code-based game-playing proofs and the security of triple encryption;Preprint,2004

3. Parallel authentication and public-key encryption;Information Security and Privacy – ACISP 2003,2003

4. A new variant of the Cramer–Shoup KEM secure against chosen ciphertext attack;Applied Cryptography and Network Security – ACNS 2009,2009

5. On the security of joint signature and encryption;Advances in Cryptology – EUROCRYPT 2002,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3