Study of nanolayer on red blood cells as drug carrier in an artery with stenosis

Author:

Prasad Bhawini1

Affiliation:

1. Department of Mathematics, Harcourt Butler Technical University , Kanpur , Uttar Pradesh 208002 , India

Abstract

Abstract This article discusses a novel idea from cell therapy in which nanoparticles (NPs) are adsorbed on red blood cells (RBCs). RBCs serve as a drug carrier for NPs or nanodrugs adsorbed on the cell membrane of RBC. For the purpose of examination, Fe 3 O 4 {{\rm{Fe}}}_{3}{{\rm{O}}}_{4} NPs are adsorbed on RBCs, collectively called NP-RBC complex. RBCs being a natural vascular carrier, have high transfusion rates and biocompatibility. This mathematical study provides a basis to attempt nanodrug delivery via RBCs, as carriers for nanodrugs, to the stenosed sites in an artery. The mathematical model is developed for an artery with stenosis and a catheter that regards the temperature and velocity of the NP-RBC complex. Catheter coated with the NP-RBC complex is inserted into the lumen of the stenosed artery. The mathematical problem is solved numerically using Bernstein polynomials. The physical features were discussed through graphs plotted using MATLAB. The influence of parameters such as volume fraction, radius of the NP-RBC complex in blood, and the thickness of the nanolayer on RBCs was studied. A noticeable outcome states that the nanolayer of optimum thickness about 50–40 nm is suitable for this purpose. Thus, this is an attempt to study the delivery of NPs adsorbed on the surface of RBCs to develop newfangled strategies in nanomedicine bearing high precision and efficiency.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Mathematical Physics,Molecular Biology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3