On building machine learning models for medical dataset with correlated features

Author:

Nayak Debismita1,Tantravahi Sai Lakshmi Radhika1

Affiliation:

1. Department of Mathematics, Birla Institute of Technology and Science-Pilani , Hyderabad Campus , Hyderabad-500078 , India

Abstract

Abstract This work builds machine learning models for the dataset generated using a numerical model developed on an idealized human artery. The model has been constructed accounting for varying blood characteristics as it flows through arteries with variable vascular properties, and it is applied to simulate blood flow in the femoral and its continued artery. For this purpose, we designed a pipeline model consisting of three components to include the major segments of the femoral artery: CFA, the common femoral artery and SFA, the superficial artery, and its continued one, the popliteal artery (PA). A notable point of this study is that the features and target variables of the former component pipe form the set of features of the latter, thus resulting in multicollinearity among the features in the third component pipe. Thus, we worked on understanding the effect of these correlated features on the target variables using regularized linear regression models, ensemble, and boosting algorithms. This study highlighted the blood velocity in CFA as the primary influential factor for wall shear stress in both CFA and SFA. Additionally, it established the blood rheology in PA as a significant factor for the same in it. Nevertheless, because the study relies on idealized conditions, these discoveries necessitate thorough clinical validation.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3