Bernoulli-Langevin Wind Speed Model for Simulation of Storm Events

Author:

Fürstenau Norbert1,Mittendorf Monika1

Affiliation:

1. Institute of Flight Guidance, German Aerospace Center (DLR), Braunschweig, Germany

Abstract

Abstract We present a simple nonlinear dynamics Langevin model for predicting the instationary wind speed profile during storm events typically accompanying extreme low-pressure situations. It is based on a second-degree Bernoulli equation with δ-correlated Gaussian noise and may complement stationary stochastic wind models. Transition between increasing and decreasing wind speed and (quasi) stationary normal wind and storm states are induced by the sign change of the controlling time-dependent rate parameter k(t). This approach corresponds to the simplified nonlinear laser dynamics for the incoherent to coherent transition of light emission that can be understood by a phase transition analogy within equilibrium thermodynamics [H. Haken, Synergetics, 3rd ed., Springer, Berlin, Heidelberg, New York 1983/2004.]. Evidence for the nonlinear dynamics two-state approach is generated by fitting of two historical wind speed profiles (low-pressure situations “Xaver” and “Christian”, 2013) taken from Meteorological Terminal Air Report weather data, with a logistic approximation (i.e. constant rate coefficients k) to the solution of our dynamical model using a sum of sigmoid functions. The analytical solution of our dynamical two-state Bernoulli equation as obtained with a sinusoidal rate ansatz k(t) of period T (=storm duration) exhibits reasonable agreement with the logistic fit to the empirical data. Noise parameter estimates of speed fluctuations are derived from empirical fit residuals and by means of a stationary solution of the corresponding Fokker-Planck equation. Numerical simulations with the Bernoulli-Langevin equation demonstrate the potential for stochastic wind speed profile modeling and predictive filtering under extreme storm events that is suggested for applications in anticipative air traffic management.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Reference12 articles.

1. S. Albeverio, V. Jentsch, and H. Kantz, Eds., Extreme Events in Nature And Society, Springer, Berlin, Heidelberg, New York 2006.

2. N. Fürstenau, Proc. 7th Int. Conf. on Research in Air Transportation (ICRAT), Philadelphia June 20–25, 2016, http://www.icrat.org/icrat/2016/papers/4/ICRAT_2016_paper_4.pdf.

3. N. Fürstenau, A. Heidt, M. Kapolke, F. Liers, M. Mittendorf, et al., in: Proc. 5th SESAR Innovation Days (Ed. D. Schäfer), Bologna 2015, Eurocontrol-SESAR-WPE, http://www.sesarinnovationdays.eu/files/2015/Papers/SIDs_2015_paper_9.pdf.

4. M. Kapolke, N. Fürstenau, A. Heidt, F. Liers, M. Mittendorf, et al., J. Air Transp. Manag. 56A, 48 (2016).

5. H. Kantz, D. Holstein, M. Ragwitz, and N. K. Vitanov, Physica A 34, 315 (2004).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3