Gravity beyond Einstein? Part I: Physics and the Trouble with Experiments

Author:

Hauser Jochem1,Dröscher Walter2

Affiliation:

1. HPCC-Space GmbH, Hamburg and Ostfalia University of Applied Sciences , Suderburg , Germany

2. Institut für Grenzgebiete der Wissenschaft , 6010 Innsbruck , Austria

Abstract

Abstract This article provides a review of the latest experimental results in quantum physics and astrophysics, discussing their repercussions on the advanced physical theories that go beyond both the SMs (standard models) of particle physics and cosmology. It will be shown that many of the essential concepts of the advanced theoretical models developed over the past 40 years are no longer tenable because they are contradicting the novel data. Most recent results (December 2016) from the Large Hadron Collider revealed no new matter particles up to particle masses of 1.6 TeV/c2, which is in accordance with recent ACME experimental data (2014) that saw no electric dipole moment for the electron as predicted by these theories. Moreover, the LUX experiment (since 2013) did not see any dark matter particles either, thus independently supporting LHC and ACME measurements. Furthermore, experimental particle physics seems to be telling us that dark matter particles (LHC results) do not exist, suggesting that dark matter particles either are more exotic or are more difficult to detect than had been predicted in the past decades (less likely with recent LHC results). Astrophysical observations since 1933, starting with Caltech astronomer Zwicky, however, have provided irrefutable evidence for the existence of dark matter, for instance, based on the phenomenon of gravitational lensing as well as observed rotational velocities of stars orbiting the galactic center that are deviating from Newton’s law. Surprisingly, recent astronomical observations by Bidin, ESO (2010, 2012, 2014), seem to indicate the absence of dark matter within galaxies. In addition, cosmology at present has no explanation for about 68 % of the energy in the Universe that comes in the form of dark energy. Recently, measured data from three entirely different types of experiments both on earth and in space (2006–2011) are hinting at completely novel features of gravity that, if confirmed, must be outside Einstein’s general relativity. Extreme gravitomagnetic and gravity-like fields may have been observed at cryogenic temperatures generated by a rotating ring or disk. However, these experimental results are not conclusive so far. The strength of these extreme fields has been calculated and, according to the respective equations, should be sufficient to serve as a basis for a gravitational technology that, for example, could establish long sought field propulsion (i.e. propulsion without fuel), actively researched by physicists and rocket engineers in the 1960s and 1990s. This article concludes with an outlook on the novel technology of gravitational engineering that might follow from gravity-like fields and discusses the novel physical concepts resulting from the existence of these extreme gravitomagnetic fields.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Reference85 articles.

1. C. W. F. Everitt, D. B. DeBra, B. W. Parkinson, J. P. Turneaure, J. W. Conklin, et al., Phys. Rev. Lett. 106, 221101 (2011).

2. W. Dröscher and J. H. Hauser, An Introduction to the Physics, Astrophysics and Cosmology of Gravity-Like Fields, 526 pp., color, published by HPCC-Space GmbH (www.hpcc-space.de), Hamburg, Germany, 2016, www.amazon.com.

3. W. Dröscher and J. Hauser, Gravity beyond Einstein? Part II: Novel Physical Concepts, Explanation of Experiments, and Gravity-Like Fields, to be submitted to ZNA, 2018.

4. H. Katz, F. Lelli, S. S. McGaugh, A. Di Cintio, C. B. Brook, et al., arXiv:1609.05917v1 [astro-ph.GA], 2016.

5. F. Lelli, S. S. McGaugh, J. M. Schombert and M. S. Pawlowski, arXiv:1610.08981v1 [astro-ph.GA], 2016.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3