Affiliation:
1. School of Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, PR China
Abstract
Abstract
In the present paper, based on the Riemann theta function, the Hirota bilinear method is extended to directly construct a kind of quasi-periodic wave solution of a new integrable differential-difference equation. The asymptotic property of the quasi-periodic wave solution is analyzed in detail. It will be shown that quasi-periodic wave solution converge to the soliton solutions under certain conditions and small amplitude limit.
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics
Reference52 articles.
1. E. Fermi, J. Pasta, and S. Ulam, Collected Papers of Enrico Fermi II, University of of Chicago Press, Chicago 1965.
2. M. Wadati and M. Toda, J. Phys. Soc. Jpn. 39, 1196 (1975).
3. D. Levi and O. Ragnisco, Lett. Nuovo Cimento 22, 691 (1978).
4. S. I. Svinolupov and R. I. Yamilov, Phys. Lett. A 160, 548 (1991).
5. R. I. Yamilov, J. Phys. A: Math. Theor. 27, 6839 (1994).