Large-Eddy Simulation of Shaped Hole Film Cooling with the Influence of Cross Flow

Author:

Qingsong Wang12,Su Xinrong12,Yuan Xin2

Affiliation:

1. State Key Laboratory of Aerodynamics , China Aerodynamics Research and Development Center , P. O. BOX 211 Mianyang , Sichuan 621000 , China

2. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University , Beijing 100084 , China

Abstract

Abstract In the highly-loaded turbine blade passage, cross flow is driven by the lateral gradient. It strongly influences the cooling performances in the endwall region. In this research, the effect of cross flow on the shaped film cooling hole is studied by Large Eddy Simulation (LES); modal analysis is conducted with an incremental POD (iPOD) approach, which makes the analysis of the large data sets from LES feasible. It is shown that the symmetry of the counter rotating vortex pair (CRVP) is destroyed. The large-scale vortex induced by end-wall cross flow plays an important role in both shape and convection of hairpin vortices and horseshoe vortices, which influences the coolant distribution. This study suggests that the effects of cross flow should be considered for the design of end-wall film cooling. It also indicates the high efficiency of the iPOD approach, which can be used to analyze large amounts of high-dimensional data.

Publisher

Walter de Gruyter GmbH

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3