Author:
Gronle Marc,Osten Wolfgang
Abstract
AbstractMulti-scale optical sensor systems help to overcome the area of conflict between resolution, field size, and inspection time if it comes to the frequent problem of detecting small defects on large areas. The sensors of such systems are chosen according to two main properties: On the one hand, they should measure in opposed scales; on the other hand, their measurement principles should vary as well in order to be suitable for different material and surface properties. However, these systems can only operate at full capacity if it is possible to unify the acquired data from each sensor into one common coordinate system such that an overall analysis is possible, or subsequent sub-measurements can be triggered. In this paper, a general approach for a common sensor referencing is proposed, whose focus lies on microscopic optical sensors for both scattering and reflecting surfaces. The method is able to handle resolutions from the nanometer to millimeter scale in one single system, but is also feasible for a coordinate unification across several single sensor systems.
Subject
Instrumentation,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials