Modeling and analysis of 3D radiative heat transfer in combustor

Author:

Zhou Yue12,Zhu Xijuan1,Guo Qisheng2,Qi Pengcheng2,Ma Jing1

Affiliation:

1. Science and Technology on Optical Radiation Laboratory , Beijing , China

2. Military Exercise and Training Center, Army Academy of Armored Force , Beijing , China

Abstract

Abstract Compared with wall emission, gas thermal radiation is much more complicated because of its nongray and volumetric property. In this paper, a numerical method is established to calculate 3D radiative heat transfer in combustor by modelling radiative transfer as well as nongray radiative properties of combustion gases. Energy exchanges caused by thermal radiation and conduction are calculated and compared in a rectangular combustor, which shows the significant role of thermal radiation in heating fuel-air mixtures and prompting internal combustion reactions. Besides, radiative heat flux on the wall is also quite obvious although a non-contacting flow case, revealing the special challenges for thermal protections brought by radiant energy. Lastly, increasing the working pressure means much more participating species in radiative transfer process and the radiative effects will be also magnified. The numerical method in this paper provides a direct technique to analyze the role of thermal radiation in complex thermochemical reactions while the application case proves the necessity of coupling a high-accuracy radiation model when simulating combustion and flame propagation.

Publisher

Walter de Gruyter GmbH

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Infrared simulation of aircraft rear fuselage based on a coupled CFD method;International Journal of Turbo & Jet-Engines;2022-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3