An improved compact propulsion system model based on batch normalize deep neural network

Author:

Fang Juan1,Zheng Qiangang1,Zhang Haibo1,Jin Chongwen1

Affiliation:

1. Nanjing University of Aeronautics and Astronautics, JiangSu Province Key Laboratory of Aerospace Power System , No. 29 Yudao Street , Nanjing 210016 , China

Abstract

Abstract Aero-engine on-board steady state model is an important part of many advanced engine control algorithms. In order to build a high accuracy and real-time steady-state onboard model in a large envelope, an ICPSM (improved compact propulsion system model) based on batch normalize neural network is proposed in this paper. Compared with piecewise linearization model and support vector machine model, conventional CPSM which is mainly composed of baseline model and nonlinear sub model has the advantages of high real-time performance and small data storage. However, as the similarity conversion error increases with the distance from the design point, the cumulative error of the conventional baseline model also increases, which makes the model unable to maintain high accuracy in the full envelope. Thus, a high accuracy baseline model in full envelope based on batch normalize neural network is proposed in this paper. The simulation result shows that compared with the conventional compact propulsion system model, the percentage error of parameters of the improved compact propulsion system model based on the batch neural network is reduced by two times, the single step operation time is reduced by 18%, and the data storage of the onboard model is reduced as well.

Funder

National Natural Science Foundation of China

National Science and Technology Major Project

Research on the Basic Problem of Intelligent Aero-engine

Fundamental Research Funds for the Central Universities

Publisher

Walter de Gruyter GmbH

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3