Effect of G-type integral squeeze film damper on the dynamic characteristics in rotor system

Author:

Yan Wei1ORCID,He Lidong1,Zhu Gang2,Jia Xingyun1

Affiliation:

1. Beijing Key Laboratory of Health Monitoring and Self-Recovery for High-End Mechanical Equipment , Beijing University of Chemical Technology , Beijing , 100029 , P. R. China

2. Ministry of Education Engineering Research Center of Chemical Safety , Beijing University of Chemical Technology , Beijing 100029 , P. R. China

Abstract

Abstract To solve the problems of the nonlinear damping force in the traditional squeeze film damper (SFD), a novel structure of G-type integral squeeze film damper (GISFD) based on ISFD is proposed for the first time. The finite element model and test rig of the ball bearing-rotor system are established to explore the influence of GISFD and ISFD on the dynamic characteristics of the unbalanced rotor system. The results show that both GISFD and ISFD can change the critical speed of the rotor system, reduce the bending strain energy of the shaft, and reduce the bearing dynamic load of the rotor system. Through comparison, it is found that the effect of GISFD is more obvious. The experimental results show that, compared with the unbalanced rotor system without damper, the peak-peak value of amplitude in the rotor system with GISFD and ISFD at 3000 rpm is reduced by 25.53 and 15.81%. The amplitude in the disk at the first-order critical speed is effectively reduced, and the reduction range reach 52.01 and 35.44%, respectively. GISFD has a more significant effect of suppressing unbalanced vibration, and has superior vibration damping performance when compared with ISFD.

Publisher

Walter de Gruyter GmbH

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rotor vibration control via integral magnetorheological damper;International Journal of Mechanical Sciences;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3