Performance enhancement and flow separation control in an S-duct by air injection

Author:

Gao Xi1,Cao Zhiyuan1,Zhang Xiang1,Zhang Fei1,Yang Jing1,Liu Bo1

Affiliation:

1. School of Power and Energy , Northwestern Polytechnical University , Xi’an 710072 , China

Abstract

Abstract With the purpose of investigating the effect mechanism of injection on flow separation of the S-duct, different single-hole schemes were investigated and compared with double-hole schemes. Results show that, the performance of S-duct can be improved by using injection. The optimal scheme in this study is a double-hole injection scheme with two holes located at the same axial position. Flow separation reduction and a 16.9% reduction of loss coefficient were achieved by injection with an injection coefficient of 0.46% in each hole. The flow mechanisms are that, firstly, high momentum fluid is injected to separated flow by air injection; secondary, high momentum flow is transported to flow near downside wall by injection vortex. The position effect, injection flow rate effect and hole shape effect were also discussed. For double-hole scheme, the scheme with two holes located different axial positions generates a stronger vortex by mixing two injection vortexes and enhances secondary flow. Though the flow separation is reduced, a severe nonuniform flow field at outlet is formed. Due to the less swirling flow achieved at outlet of S-duct by Double-y scheme, it can offer a more uniform flow field for downstream compressor and has a better control effectiveness.

Publisher

Walter de Gruyter GmbH

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3